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Abstract—The continuously increasing demand for higher da-

ta rates is a challenge for cellular networks service providers. In 

recent years, wireless video has been one of the main drivers of 

wireless data traffic, and this kind of traffic is going to continue 

growing. The LTE-Advanced standard (LTE-A) introduced new 

methods to cope with the increasing users' demands, but perfor-

mance is still limited. Combining existing algorithms with Device-

to-Device (D2D) communications is a promising solution to deal 

with these issues. In D2D, transmission between users' devices 

takes place over direct links, without going through the Base-

Stations (BS). Here, we introduce an algorithm for improving the 

throughput of video transmission in cellular networks called the 

Cached and Segmented Video Download (CSVD). The algorithm 

splits video files into pieces that are cached in selected user 

equipment (UEs) in the cellular network, and employs D2D 

communication between UEs to exchange files' pieces. We have 

built different models and simulated the CSVD algorithm using 

the Discrete Event System Specification (DEVS) formalism. The 

models are used to study the performance improvement achieved 

by the CSVD in terms of cell's aggregate data rate as well as the 

average data rate per user. Simulation results show that the 

CSVD achieves significant improvement over the conventional 

transmission approaches. 

I. INTRODUCTION 
In recent years, the advance in cellular networks and mo-

bile devices has led to major improvements in the services 
provided to cellular networks users. This has caused the rate of 
adoption of mobile devices to grow exponentially [1]. Nowa-
days, many web users use smart phones as their primary way 
to access the web. Due to the nature of these newly provided 
services, and to the increased number of users, the demand for 
higher data rates has increased exponentially. Providing such 
high data rates for users has become one of the main challeng-
es for cellular service providers.  

Wireless video has been one of the main drivers of wire-
less (cellular) data traffic, and its importance is going to grow. 
As the storage and the screen size of smart devices such as 
tablets and smart phones continues to increase, users will 
watch longer videos with higher resolution. This will signifi-
cantly increase the amount of data to be transmitted. Recent 
estimates show that approximately three-fourths of the world’s 
mobile data traffic will be video by 2019. Mobile video will 
increase 13-fold between 2014 and 2019, accounting for 72 
percent of total mobile data traffic [2].  

The scarcity of the radio spectrum is a major reason for the 
inability to provide higher data rates. As most of the licensed 
frequency bands are allocated, it is difficult to provide suffi-

cient resources to the users and their increased bandwidth. As 
such, there is a need for new techniques to increase the data 
rates by utilizing the radio spectrum more efficiently or by 
improving the transmission link capacity. 

The LTE-Advanced (LTE-A) standard was introduced by 
the 3rd Generation Partnership Project (3GPP) to cope with 
these increasing user demands and to meet the requirements of 
International Mobile Telecommunications-Advanced [3]. Alt-
hough LTE-A has higher performance than 2G and 3G net-
works, its performance is still limited, and the increase in vid-
eo transmission rates will make it worse.  

Here, we propose a method for improving the throughput 
of video transmission, as this could help with the increasing 
wireless data traffic. One way to do this was proposed in [4], 
in which the authors proposed a new communication architec-
ture that exploits Device-to-Device (D2D) communications 
for improving the throughput of video transmission.  

D2D communication provides direct communication be-
tween two User Equipment (UEs) without going through the 
Base-Stations (BS) or the core network. Users nowadays use 
high data rate services, which could significantly benefit from 
direct communication between users. In recent years, we have 
seen various efforts combining current standards with D2D 
communications [5-8] in order to improve performance.  

In particular, architecture proposed in [4] exploits the fact 
that video files have a high degree of content reuse: usually, a 
few popular files are requested by a large number of users 
(such as viral YouTube videos, reports from recent sport 
events, etc.). The basic idea is to cache popular video contents 
in the UE devices. If cached video files are requested, they 
will be sent to the requesting devices over D2D links.  

The original architecture is limited: it assumes that the files 
are pre-cached at random in the nodes, and complete files are 
cached and exchanged between the network nodes. Further-
more, they did not define a messaging protocol between the 
UEs and BS to exchange such files. Instead, a simple model was 
used to study the the performance of the architecture analytically. 

Here, we propose a variation of the original architecture, 
called the Cached and Segmented Video Download (CSVD) 
algorithm [9]. Our objective is improving the throughput of 
video transmission in cellular networks. CSVD is based on the 
architecture described above, but instead of caching complete 
files, the files are split into pieces and cached in multiple 
nodes. We assume that no files are cached in the beginning, 
and that files are stored upon request. The algorithm defines 
how the files are cached and exchanged among the UEs. The 



algorithm also considers the messaging/signaling protocol be-
tween the BS and the UEs. Only the selected UEs in each clus-
ter are used for caching to reduce inter-cluster interference. A 
complete detailed protocol has been defined, including a varie-
ty of messages necessary for this communication, and a com-
plete definition of the protocol is described.  

We built a suite of models using the Discrete Event Sys-
tem Specification (DEVS) formalism [20] and the CD++ 
DEVS toolkit to model an LTE-A cellular network. The hier-
archical and modular nature of DEVS was useful for modeling 
and simulating this network, which was built using different 
submodels, in which each one implements a different compo-
nent of the wireless network. Each of the submodels could be 
tested and verified separately, and later integrated into the 
whole model, and reused. This made it easy to design, imple-
ment, and test. System level simulations were performed to 
evaluate the performance of the CSVD algorithm with differ-
ent parameters. Simulation results show that CSVD achieves a 
significant improvement over the conventional transmission ap-
proach where D2D communication is not employed. Further-
more, simulation results show the performance of CSVD under 
different parameters (number of users, files' popularity, etc.). 

The rest of this paper is organized as follows, In Section 2, 
we provide an overview of related work. In Section 3, we pre-
sent the CSVD algorithm. In Section 4, we describe the mod-
eling of the LTE-A cellular network in DEVS. The simulation 
scenarios and results are presented in Section 5. 

II. BACKGROUND 
Recently, various research efforts focused on improving 

the data rates of cellular networks, and on how to meet the in-
creasing performance demands. A great deal of this research 
has been conducted at the physical layer, focusing on the 
transmission link capacity [11]. However, such improvement 
is limited, as the rates achieved by modern networks are close 
to the theoretical limits. Another approach has been to de-
crease the size of the cells in order to provide higher spectral 
efficiency [12]. This is a costly approach, which requires in-
creasing the number of cells in the network. 

As we discussed in the Introduction, improving the trans-
mission of video could improve the overall performance of the 
network. In [13], the authors proposed caching popular video 
files at the BSs or at the mobile switches, reducing the traffic 
on the backhaul network and eliminating the need to fetch the 
file from the Internet. Nevertheless, this caching does not im-
prove the transmission between UEs and BS over radio links.  

In [14], the authors proposed creating simultaneous coded-
multicasting opportunities. The contents are placed in order to 
allow the central server to satisfy the requests of several users 
with different demands with a single multicast stream. The 
multicast streams are generated by coding across the different 
files requested by the users. Each user exploits the content 
stored in the local cache memory to enable decoding of its re-
quested file from these data streams. In [15], another approach 
was proposed for caching video files. The idea is to cache con-
tents expected to be requested by a user on their device. This 
can be applied by using a virtual home-box layer for distrib-
uting efficient and scalable future internet video on demand 
streaming services. In these two approaches, cached contents 
can be only used locally by the caching devices, and cannot be 
exploited by others in the network.  

In recent years there has been a great deal of research on 
using D2D communication in cellular networks, as it provides 
a good means for improving performance [5-8], and different 
authors started to use this method combined with caching. The 
mobile content delivery network is a proposed technology in 
which devices that are designated as caching servers are used 
to provide nearby users with cached contents on demand`, and 
content delivery could take place over D2D links [16]. While 
this technology could help improve the data rates in cellular 
networks, it is costly as these designated devices need to be 
placed throughout the network, configured, and maintained. 
Instead, the architecture, proposed in [4] can improve the 
throughput of video transmission and overcome the problem 
of rapidly increasing wireless video traffic. In current cellular 
networks, when a UE wants to download a video file, it sends 
the request to its BS. The BS will get the file and send it to the 
requesting UE through a cellular downlink (DL). In the ap-
proach presented in [4], the cell is divided into “clusters” of 
nodes. Each cluster contains a group of nodes that can ex-
change information with each other by using D2D links. The 
nodes in each cluster can save video files. When a video file is 
requested by a UE, the BS will check to see if the file is stored 
in the virtual storage of that cluster. If the requested file is 
found, it will be transmitted from the UE that has the file to 
the requesting UE over a D2D link. The network model in [4] 
is oversimplified. It also is assumed that video files are already 
saved in the UEs and random storage of the video files is con-
sidered. How the files are cached is not considered. Further-
more, it is assumed that UEs should save and forward com-
plete files over D2D links. 

In [17], the authors provide analytical results on the 
throughput scaling laws of wireless networks with caching and 
asynchronous content reuse, and they compare the method 
above with coded multicasting. Analytical results showed that 
the proposed approach achieves the same throughput scaling 
law of the infrastructure-based coded multicasting scheme. In 
[18] the authors studied coded multicasting analytically in or-
der to allow nodes in an “infrastructure-less” network to ex-
change pre-cached files. This means that no BS is considered 
in the network. Files are assumed to be pre-cached. They do 
not discuss how the files are placed in the nodes, and the sig-
naling/messaging between the UEs and the BS is not studied.  

D2D communication highly depends on the participation 
of users in sharing contents. As such, it is important to find 
different approaches to motivate such user involvement. There 
has been much research on incentive mechanisms to motivate 
user involvement in D2D communication [19-21].    

As mentioned in the introduction, we used the architecture 
proposed in [4] to define the CSVD algorithm for improving 
the throughput of video transmission in cellular networks. We 
studied the performance of the algorithm by building a com-
plex model and running varied simulations of the new proto-
col. We used the DEVS formalism [22] to build our models 
and to test and evaluate the CSVD algorithm. DEVS has been 
proposed as a sound formal framework for modeling generic 
dynamic systems and includes hierarchical, modular and com-
ponent-oriented structure and formal specifications for defin-
ing structure and behavior of a discrete event model.  

A DEVS model is composed of structural (Coupled) and 
behavioral (Atomic) components, in which the coupled com-



ponent maintains the hierarchical structure of the system, 
while each atomic component represents a behavior of a part 
of the system [22]. An input to the atomic component via an 
input port triggers a state transition (referred to as “external 
transition”), and in contrast the state transition (referred to as 
“internal transition”) at the end of the time-delay of each state 
leads to an output generation through an output port. 

We used the CD++ toolkit [23] to implement our LTE-A 
network DEVS model. CD++ is an open-source simulation 
software written in C++ that implements the DEVS abstract 
simulation technique. The simulation engine tool of CD++ is 
built as a class hierarchy [23]. Using CD++, atomic models 
are developed using C++ programming language and can be 
incorporated into the class hierarchy. In addition to the atomic 
models, passive classes can be also used. Coupled models can 
be created using a language built in the simulation engine. 

Modeling the LTE-A network using DEVS will be dis-
cussed in Section 4. In the following Section, we provide a de-
tailed description of the CSVD algorithm and how it operates.  

III. THE CSVD ALGORITHM 
CSVD focuses on scenarios where there is limited area 

with high density of users, for instance:  

• Sport events in which users want to download instant 
replays from this event, or videos of other events tak-
ing place at the same time. 

• Live concerts with detailed video feeds of the arena. 

• Massive religious events (i.e., a Pope’s Mass in St. Pe-
ter’s Basilica in The Vatican). 

• Large political events (i.e., election results or inaugura-
tion speeches). 

• University convocations. 

Let us consider one cell in a cellular network, in which the 
BS is in the middle of the coverage area, as seen in Fig. 1.  

 
Fig. 1. Cell after clustering. 

In this research, we only considered cases where UEs are 
stationary. Furthermore, we did not consider UE power fail-
ure. At the beginning, the BS starts by dividing the cell into 
clusters, as follows: 

1) The BS logically divides the coverage area into non-

overlapping subareas. Each one of these will be a cluster. 

2) The BS sends a broadcast Clustering message telling 

the UEs that a cluster formation is about to start.  

3) The UEs reply with a Clustering Response message in-

dicating their location. 

4) The BS assign UEs to clusters based on their locations, 

and it selects the UEs in the central area of each cluster as 

Storage Members (SMs) of that cluster, as in Fig. 1. We only 

choose UEs in the middle of each cluster as SMs, in order to 

prevent inter-cluster interference when the SMs transmit to 

other UEs in the same cluster using D2D links. 
After completing the clustering phase, the transmission 

phase can begin. In this phase, the UEs send requests to down-
load video files to the BS. When the BS receives a download 
request, it processes the request, and responds as follows.  

• Send With Assistance (SWA): if the file (or parts of it) 
is available in any of the SMs, the BS will ask them to 
send the pieces to the requesting UE over D2D links.  

• Send To a SM (STSM): if the requested file is not 
available in the distributed cache (or more copies need 
to be cached in the cluster) and the requesting UE is a 
SM, the BS will send the file to that UE over a cellular 
link, and it will ask the UE to cache the file. This case 
allows the SMs to cache video files. These files will be 
available for UEs in the cluster when requested later. 

• Send To a UE (STUE): otherwise, the BS will send the 
file directly to the requesting UE over a cellular link. 

 In the following sections, we discuss the different cases 
discussed above in detail. 

A. Send With Assistance case  
Fig. 2 shows the steps of the download process of a file for 

the SWA case.  

 

Fig. 2. CSVD algorithm. 

 
As we can see, the BS, a requesting UE, and SMs are in 

the same cluster as the requesting UE. In this case, the down-
load process will be as follows: 

1) The UE sends a Download Request message to the BS. 

2) As this file has already been sent before to an SM to 

cache it, the BS has a MetaInfo file that describes the parame-



ters for the download session of this video file. The MetaInfo 

file contains the following fields. 

TABLE I.  METAINFO FILE 

Field Description 

File Size The file size in bytes 

Number of Pieces The number of pieces 

Piece size The piece size in bytes 

Last piece size Last piece size in bytes 

File name A string representation of the file 

Info A dictionary that describe the file 

 

The fields in the MetaInfo file represent the parameters for 

this download session. This will be sent to the requesting UE 

to set the parameters of this download (Number of pieces, file 

name, etc.). The first field is the size of the file to be sent in 

bytes. As the piece size is fixed, the number of pieces can be 

found. The size of the last piece is variable, and it is indicated 

in the fourth field. The File name is a string representation of 

the file. This is generated by the BS, and serves as a unique 

identifier of the file for this algorithm. The BS then sends a 

handshake message to the requesting UE. The handshake mes-

sage contains the MetaInfo file above. 

3) The BS will check its database to find out which of the 

SMs have the pieces of the cached file. Then, the BS will send 

an Assistance Request message to these SMs asking for their 

assistance to send pieces to the requesting UE. The Assistance 

Request message has a field indicating the number and indexes 

of the pieces that the SM needs to send to the requesting UE. 

4) The SMs will send a Response message. The SMs will 

indicate whether they are available to assist with this down-

load session or not. The Response message also contains a 

field that indicates the maximum number of outstanding as-

sists the BS should send, i.e., the maximum number of assists 

this SM can handle at a time. The SM finds this number based 

on the current processes/transmissions it is handling. The SM 

can send this message to BS during the assistance session if it 

wants to change the maximum number of concurrent Assists. 

5) The BS and the SMs starts sending the pieces to the re-

questing UE. Each time the BS wants an SM to forward new 

piece(s) of the file, it will send that SM an Assistance Request 

message indicating the piece(s) to forward. Each piece mes-

sage has an index that identifies the piece. 

6) When an SM finishes sending pieces, it will send an 

SM_Finished message to the BS, acknowledging the transmis-

sion of the piece(s).  

7) When the BS receives SM_Finished for the pieces from 

the SMs participating, and when it finishes sending its pieces, 

it will send a Done message to the requesting UE. 

8) When the requesting UE receives a Done message, it 

will send a BitField message indicating the pieces it has re-

ceived. 
Using D2D links to transmit cached pieces of the files can 

save a considerable amount of cellular resource blocks (RBs) 
that can be used to serve other users, which will increase the 
cell throughput and the video transmission rate. 

As part of the CSVD algorithm, the BS should keep track 
of the followings in its database: 

• A list of the current clusters 

• For each cluster, the BS should keep a list of the mem-
bers and SMs of each cluster 

• A list of cached files/pieces, and the caching SMs of 
each piece 

B. Send To a SM case 
In this case, the file transfer starts by the SM sending a 

Download Request message to download a file. After receiv-
ing the request, the BS will start a session with this UE. If this 
is the first time a SM request this file, the BS creates a Me-
taInfo file that contains information about this transfer. The 
MetaInfo file is the same as in table 1. The BS also creates a 
handshake message and sends it to the requesting SM. The BS 
then starts sending pieces of the file directly to the SM over 
cellular link. The Save bit in the Piece message is always set 
to indicate that the SM should cache the received piece. The 
SM keeps a BitField to keep track of the received pieces. After 
sending all the pieces, the BS will send a Done message. 
When the SM receives all the pieces and the Done message, it 
will send a message containing the BitField to the BS to indi-
cate the end of the file transfer.  

C. Send To a UE case 
In this case, the requesting UE is not an SM, and the file is 

not available in the cluster. There are two differences between 
this case and STSM. First, the BS always splits the file into 
pieces and creates a new MetaInfo file as the file was not re-
quested by a SM before. Second, the Save bit is always zero in 
the Piece message so that the piece will not be cached.  

D. The SVD algorithm 
We call our implementation of the conventional download 

process the Segmented Video Download (SVD), as video files 
are sent in pieces. In SVD, we do not use file caching or D2D 
communications. Instead, the files will be sent as in STUE. 

IV. MODELING OF THE MOBILE NETWORK 
As discussed earlier, we built a DEVS model of the pro-

posed architecture and executed numerous simulation scenari-
os, some of which will be discussed in these sections.  

Fig. 3 shows the structure of a coupled DEVS model used 
for a single cell network. This model was used to evaluate the 
performance of the CSVD and SVD. As can be seen, at the top 
level, we have the Cell coupled model, which contains the BS, 
Transmission Medium, and many UE coupled models. We can 
have an unlimited number of UEs. The Cell coupled model al-
so contains the Cell Manager atomic model. 

The BS coupled model is used to simulate the BS in the 
cell. It contains two atomic models, BS Queue and BS control-
ler. The BS controller is where the BS part of the algorithm is 
implemented (for example, steps 2, 3, 5, and 7 in Fig. 2). The 
BS Queue atomic model is used to buffer messages sent to the 
BS Controller. The BS Queue atomic model buffers messages 
sent for the BS controller. It checks the destination address of 
each message to see if the message is intended for the corre-
sponding controller. If it is, it will buffer this message to be 
sent to the controller. Otherwise, the message will be discard-
ed. The UE coupled models are used to model the UEs in the 
cell. Each one of these models contains two atomic models: 
UE Queue, and UE Controller. The UE part of the algorithm 
(for example, steps 1, 4, 5, 6, and 8 in Fig. 2) is implemented in the 



UE controller atomic model. As with the BS Queue, the UE Queue 
buffers messages that are sent to the corresponding controller.    

Aside from the atomic model components above, many 
other passive classes have been added. These include classes 
to model the cellular DLs and uplinks (ULs), D2D links, 
download sessions the BS has with UEs, cell clusters, etc.  

The Cluster passive class is used to model the division of 
the cell into clusters. An object of the Cluster class has x and y 
coordinates that specify the area of the cluster. Each object of 
the Cluster class has a list of pointers called Members. Items 
in this list point to the UE Controller objects that are members 
of this cluster. Furthermore, each object of the cluster class 
has a list of pointers called SMs. Items in this list point to the 
UE Controller objects that are SMs of this cluster.  

 

Fig. 3. Coupled DEVS model of the cellular network. 

The transmission Medium model represents the interaction 
between the UEs, BSs, and pairs of UEs in the model. The 
Medium model receives all the messages sent and broadcasts 
them to all the other nodes and the BS. As mentioned above, 
the Queue of the BS and the UEs will use the destination ad-
dress to recognize their messages. 

The cellular DLs and ULs between the BS and the UEs, as 
well as the D2D links between the UEs are initialized by the 
Cell Manager at the beginning of the simulation. We consider 
path loss and shadowing. For cellular links, the Macro cell 
propagation model for urban area is employed [24]. The prop-
agation model (L) is given by,   

( ) ( )
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where d is the base station-UE separation in kilometers, f is 
the carrier frequency in MHz, and Dhb is the base station an-
tenna height in meters, measured from the average rooftop 
level. The path loss (PL) is then can be calculated as 

 PL = L+LogF                                                                   (2) 
where LogF is a log-normally distributed shadowing with 
standard deviation of 10dB. The received signal is then can be 
calculated as 

 - ( - - , )
RX TX TX RX

P P MAX PL G G MCL=                           (3) 

where PRX is the received signal power, PTX is the transmitted 
signal power, GTX is the transmitter antenna gain, and GRX is 
the receiver antenna gain, and MCL is the minimum coupling 
loss. 

Considering Additive White Gaussian Noise (AWGN), the 
link data rate, R, can then be calculated as  

2

0

* log (1 ),RX
P

R B
N B

= +                                            (4) 

where N0 is the noise variance and B is the transmission 
bandwidth.  

For D2D transmission, we used a Millimeter wave channel 
model at 24 GHz defined in [25]. The path loss for D2D links, 
PLD2D, can be calculated as 
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where LogFD2D is log-normally distributed shadowing with 
standard deviation of 4.3 dB. The data rate is calculated as in 
equation (4).  

The BS Controller and the UE Controller models were 
built using a similar approach. For a detail description of these 
models and their functionalities, the reader is referred to the 
Appendix.  

V. SIMULATION SCENARIOS AND RESULTS  
We used system level simulations to evaluate the potential 

of CSVD. The DL cell's aggregate data rate and average data 
rate per user for CSVD were compared to those of the SVD 
algorithm. For SVD, the aggregate rate is the rate of the data 
transmitted from the BS to all the UEs. For CSVD, the aggre-
gate rate is the total rate of data transmitted from the BS to all 
UEs, and the data transmitted from SMs to other UEs over 
D2D links. The average data rate per user is the average rate at 
which a single user receives data. The simulation scenarios 
presented here consider a single cell with a variable number of 
UEs (ranging from 100 to 550). The urban macro propagation 
model [24] was used for cellular links with a DL operating 
carrier frequency of 900 MHz, and a transmission bandwidth of 
10 MHz. A Millimeter wave channel model at 24 GHz is used for 
D2D transmission [25]. Table 2 shows the simulation setup. 

In each iteration of the simulation, the UEs are randomly 
distributed throughout the cell using a uniformly distributed 
distance from the BS. The cell is divided into 4 clusters and 
UEs will be assigned to clusters based on their location as 
shown in Fig. 1. UEs in each cluster will also be marked as a 
SM or non-SM. UEs in the central area of each cluster  will be 
marked as SMs. The central area of each cluster forms 1/4 of 
the total area of the cluster. Hence, roughly, one fourth of the 
UEs in each cluster will be SMs. The received signal was cal-
culated according to the corresponding model for the DLs, 
ULs, and D2D links (refer to Section 4 for these models).  

The UEs then start sending download requests to the BS. 
The UEs generate requests to download video files from a list. 
The popularity of such files is generated according to Zipf dis-
tribution to simulate a variable popularity of files, as it has 



been established that this is a good model for video files popu-
larity [26]. Using this distribution, some files are requested 
more often than others are. The Zipf exponent, β, controls the 
relative popularity of the files. The size of the video files will 
be generated according to a logNormal distribution as in [27].  

TABLE II.  SIMULATION SETUP 

Parameter Value 

Cellular Channel BW (MHz) 10 

Cell Range (m) 500 

Number of clusters 4 

BS antenna gain (dB) 12 

BS transmission power (dBm) 43 

UE antenna gain (dB) 0 

UE transmission power (dBm) 21 

Noise spectral density (dBm) -174 

Antenna height (m) 15 

Transmission model UTRA-FDD 

Carrier frequency 900MHz 

File requests 20 

File size range 1-100 Megabytes 

Area configuration Urban 

Piece size (KB) 512 

Number of files 500 

D2D Channel BW (MHz) 50 

D2D Carrier frequency 24 GHz 

D2D transmitter TX Power (dBm) 23 

D2D Large-scale fading std deviation (dB) 4.3 

D2D Receiver noise figure (dB) 9 

D2D TX/RX Height from Ground (m) 1.5 

 
Each UE sends one request at a time, and after download-

ing the whole file, the UE will attempt to generate another re-
quest. Before generating each request, a UE waits for a ran-
dom period according to a Poisson distribution with mean of 
10 seconds. Each UE will send 2 download requests in total 
during each iteration (i.e., each UE will download 2 files). At 
the end of each iteration, we calculate the cell's aggregate data 
rate and the mean of the average data rate per user for all us-
ers. At the end of the simulations, we calculate the mean of the 
cell's aggregate data rates and the mean of the average data 
rates from all the iterations. The number of iterations in the 
presented simulations is 30. In addition to the mean, we show 
the margin of error for the sample mean for each value with a 
confidence interval of 95%. Unless stated otherwise, the num-
ber of UEs is 500, the Zipf exponent is 1.5, and the number of 
requests made by each UE is 2. We chose 500 as the default 
number of UEs because at 500 UEs we can better see the ef-
fect of changing the number of requests or Zipf exponent val-
ues. We use two requests as a reasonable number for file re-
quests per UE, but we also investigate different values. We al-
so study the impact of changing the Zipf exponent. 

In addition to comparing CSVD and SVD, we also use our 
protocol to study the improvement achieved by our algorithm 
when compared to the architecture in [4]. In [4], one copy of a 
file is kept in each cluster in one UE and the whole file is sent 
from that UE to the requesting UE. In our algorithm, we keep 
multiple copies of each piece of a file (up to a maximum num-
ber) in multiple SMs. This will make pieces available in mul-
tiple SMs, which allows further parallelism when sending 

pieces, and allows more load balancing between SMs. We call 
this parameter, the number of cached copies of each piece. 

Fig. 4 shows the cell's aggregate data rate versus the num-
ber of UEs in the network for SVD and CSVD with 1, 3, 5, 
and 7 cached copies, respectively. The number of cached cop-
ies indicates the maximum number of copies of each piece 
cached in each cluster (each copy is cached in a different SM). 
A 5 cached copies, for instance, means that 5 copies of a file 
will be saved in each cluster. This means, with 4 clusters, 20 
copies will be cached in the cell.  

 

 
Fig. 4. Cell's aggregate data rate vs. number of UEs. 2 requests, β = 1.5. 

 

Fig. 4 shows the improvement of CSVD over SVD. This 
improvement is caused by having more resources, i.e., the mil-
limeter wave channel used for D2D communication to send 
video files between UEs, as opposed to only cellular frequen-
cy resources. As such, more data will be transmitted in the cell 
and aggregate data rate will increase. The maximum aggregate 
rate achieved using the SVD is around 130 Mbps, while with 
the CSVD, we can achieve an aggregate rate of 180 Mbps. 
This means that a significant improvement of 50 Mbps on the 
cell's aggregate data rate can be achieved.  

As we can see, there is no significant effect for the number 
of UEs on the aggregate data rate for SVD. There is a small 
increase on the aggregate data rate of SVD when the number 
of UEs increases from 100 up to 300 (from 128 Mbps to 130 
Mbps) Beyond 300 UEs, there is no effect for increasing the 
number of UEs. In SVD, each cell has fixed cellular resources 
(for example 10 MHz cellular channel) and as the number of 
UEs increases, the cellular frequency resources used to trans-
mit data to the UEs will increase until they are fully utilized. 
As such, we can say from Fig. 4 that with SVD, at 100 UEs, 
the cell is overloaded and cellular channel is fully utilized. 
This explains the small effect of increasing the number of UEs 
byond 100 on the aggregate rate with SVD.  

For CSVD, the figure shows that there is an increase in the 
aggregate data rate with the number of UEs in the network. 
This is caused by having a millimeter wave channel with high 
bandwidth (50 MHz) used for D2D communications. As the 
number of UEs increases, there will be more requests, and 
more SMs. As such, more files will be cached and later sent 
from the distributed cache. Hence, the D2D channel will be 
further utilized and the aggregate data rate will increase. The 
aggregate data rate increases from 159 Mbps to 179 Mbps 
when the number of UEs increases from 100 to 350. However, 



the increase in the data rate slows down after 350 UEs. This is 
due to many reasons. First, as the number of UEs increases, a 
50 UEs increment will have less effect. Second, the algorithm 
is also still limited by the degree of file reusability. Only few 
files are popular and the rest of the requested files are not. Fur-
thermore, each UE requests only 2 files in total. Later in this 
section, we will show the effect of increasing file reuse.  

One can see that there is no significant effect for the num-
ber of cached copies for the CSVD algorithm on the aggregate 
data rate, because increasing the number of cached copies will 
not cause much increase in the utilization of D2D channels. 
Because for high number of UEs, the SMs in each cluster will 
be busy sending pieces to the requesting UEs, even if only 1 
copy of each file is cached in the cluster.  

Fig. 5 shows the average data rate per user versus the 
number of UEs in the network for SVD and CSVD with 1, 3, 
5, and 7 cached copies, respectively. The average data rate de-
creases with the number of Ues because the available re-
sources (frequency resources, BS processing power) is divided 
over higher number of UEs. As can be seen, a significant im-
provement is achieved by the CSVD over the SVD. At 100 
UEs, the average data rate per user is around 2 Mbps for the 
SVD, while the average data rate per user is around 5.6 Mbps 
for the CSVD with a number of cached copies of 3 or more. 
This is because with the CSVD, the files will be transmitted to 
the requesting UE in parallel from multiple sources and from 
the cluster cache, which speeds up the transmission process. 
The impact of the CSVD increases with increasing the number 
of users. For instance, at 550 UEs, the average data rate per 
user for the SVD is 0.33 Mbps, while for the CSVD and 3 
cached copies it is 2.9 Mbps, which is about 9 folds improve-
ment. As mentioned before, this is because increasing the UEs 
also increases the available SMs and requested and cached 
files. Thus, more data will be transmitted from the local cache 
over D2D links rather than being sent from the BS over cellulr 
links. As such, increasing the number of UEs will cause less 
decrease in the average data rate per user than in the SVD, 
where it decreases drastically due to dividing fixed cellular re-
sources over higher number of users.   

 

 

Fig. 5. Average data rate per user versus the number of UEs. 2 requests per 
user, and β = 1.5. 

 
Furthermore, it can be seen from Fig. 5 that significant im-

provement is achieved with the CSVD when the number of 
cached copies is increased from 1 to 3. This improvement is 

caused by having the popular files available in more SMs, 
which allows further parallelism when sending pieces, and al-
lows more load balancing between SMs, which speeds up the 
transmission of video files to the requesting UEs.  

After 3 cached copies, there is no significant effect for the 
number of cached copies in the cluster, which means that 3 
copies in the cluster are enough, especially for low number of 
UEs. This is explained in the following. The BS sends a piece 
to a SM directly (STSM) if the number of copies in the cluster 
is less than the intended number of cached copies. Otherwise, 
the piece will be sent to the SM from the distributed cache. 
Hence, increasing the number of cached copies will increase 
the average data rate up to a certain point. After some point 
increasing the number of cached copies beyond a certain value 
might cause a slight reduction in the average data rate, as too 
many copies will need to be sent to SMs from the BS over cel-
lular links even when enough copies are already cached in the 
cluster. This explains why the average data rate for CSVD 
with 7 cached copies is slightly less than that of CSVD with 3 
and 5 cached copies. This also depends on the number of UEs 
in the cluster. If the number of UEs in the cluster is large, 
there will be too many requests and hence it is worth it to 
cache a file in many SMs. However, if the number of UEs is 
small, caching files in too many SMs might cause a reduction 
in the average data rate as explained above. This explains why 
the average data rates for CSVD with 3 cached copies is 
slightly higher than that with 5 cached copies when the num-
ber of UEs is less than 350, and the other way for number of 
UEs greater than 350.   

     The Zipf exponent β controls the relative popularity of 

files. Higher values of β lead to higher content reuse. This 

means that higher β means that the popularity of the first files 

in the list will increase, and they will be requested more often. 

Fig. 6 shows the average data rate per user versus the Zipf dis-

tribution exponent for CSVD. As expected, the average data 

rate increases by increasing the Zipf distribution. This is be-

cause when the popularity of some files increases, they will be 

cached and requested by more UEs. This will increase content 

reuse and speeds up the transmission process as more files will 

be delivered from the local cache rather than from the BS over 

cellular links. However, the increase in the download rate will 

eventually stop, as the algorithm is limited by the available 

cellular and D2D frequency resources. 

 
Fig. 6. Average data rate per user versus Zipf exponent for CSVD. 500 UEs 

and 5 cached copies. 



Fig. 7 shows the average rate versus the number of files re-

quested by each UE during each iteration of the simulations 

for CSVD. As can be seen, the average download rate increas-

es by increasing the number of requests by users. This is be-

cause as the number of file requests increases, more files will 

accumulate in the cluster cache, and consequently, the cached 

files will be further reused by the later requests. As such, more 

requests will be satisfied from the cluster cache over D2D 

links, which results in higher average data rate per user. Fig. 7 

shows that the increase in the data rate eventually starts to 

slow down. This is because the algorithm is still limited by the 

available D2D subchannels and the available cellular RBs 

(cellular resources are used to send Assistance Request mes-

sages to SMs). 

 
Fig. 7. Average data rate per user versus Number of requests per user for 
CSVD. 500 UEs, 5 cached copies, and β = 1.5.      

VI. CONCLUSION 
Wireless video has been one of the main drivers of wire-

less data traffic recently. This continuously increasing video 
traffic causes a major challenge to the already overburdened 
cellular networks. Here, we proposed the Cached and Seg-
mented Video Download (CSVD) algorithm to improve the 
throughput of video transmission in cellular networks. The al-
gorithm splits video files into pieces that are cached in select-
ed user equipment (UEs) in the network, and employs the De-
vice-to-Device (D2D) communication between UEs in cellular 
networks to exchange files' pieces. We use the Discrete Event 
System Specification (DEVS) formalism to model an LTE-A 
cellular network. The model is used to study the performance 
improvement achieved by the algorithm in terms of cell's ag-
gregate video transmission rate as well as average data rate per 
user. Simulation results show that CSVD achieves very signifi-
cant improvement over the conventional transmission approach 
where D2D communication is not employed. User mobility and 
power constraints will be considered in future work.   

REFERENCES 
[1] ICT Data and Statistics Division, Telecommunication Development Bureau, 

ITU. "ICT facts and figures." Internet: http://www.itu.int/en/ITU-
D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf. Apr. 2014 [Apr. 
20 2015]. 

[2] Cisco. "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast 
Update." Internet: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white_paper_c11-520862.html. 2015 
[May 5 2015]. 

[3] S. Parkvall and D. Astely, “The Evolution of LTE Towards IMT-
Advanced,” Journal of Communications, vol. 4, No. 3, pp. 146-154, 
2009. 

[4] N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis, 
“Base-Station Assisted Device-To-Device Communications For High-
Throughput Wireless Video Networks,” IEEE Transactions on Wireless 
Communications, vol. 13, no. 7, pp. 3665-3676, 2014. 

[5] A. Asadi, Q. Wang, and V. Mancuso, “A Survey On Device-To-Device 
Communication In Cellular Networks,” IEEE Communications Surveys 
and Tutorials, vol. 16, no. 4, pp. 1801 - 1819, 2014. 

[6] B. Kaufman and B. Aazhang, “Cellular networks with an overlaid device 
to device network,” in Proc. of Asilomar Conference on Signals, Systems 
and Computers, 2008, pp. 1537–1541. 

[7] K. Doppler et al., “Device-to-device communication as an underlay to 
LTE-advanced networks,” IEEE Communications Magazine, vol. 47, no. 
12, pp. 42–49, 2009. 

[8] K. Doppler et al., “Device-to-device communications: functional pro-
spects for LTE-Advanced networks,” in Proc. of IEEE ICC Workshops, 
2009, pp. 1–6. 

[9] A. Al-Habashna, G. Wainer, G. Boudreau, and R. Casselman. "Improv-
ing Wireless Video Transmission in Cellular Networks using D2D 
Communication." Canada. Provisional patent P47111. May 2015. 

[10] B. Cohen. “The BitTorrent protocol specification," Internet: 
http://bittorrent.org/beps/bep_0003.html. Oct 2013 [May 5 2014]. 

[11] R. Clarke, “Expanding mobile wireless capacity: The challenges pre-
sented by technology and economics,” Telecommunications Policy, vol. 
38, no. 8-9, pp. 693-708, 2014. 

[12] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: a 
survey,” IEEE Communications Magazine, vol. 46, no. 9, pp. 59–67, 
2008. 

[13] H. Ahlehagh and S. Dey, “Hierarchical video caching in wireless cloud: 
Approaches and algorithms,” in Proc. IEEE ICC, 2012, pp. 7082–7087. 

[14] M. A. Maddah-Ali and U. Niesen, “Decentralized caching attains order-
optimal memory-rate tradeoff,” Accepted in IEEE/ACM Transactions on 
Networking, arXiv preprint arXiv:1301.5848, 2014. 

[15] S. A. Chellouche et al., “Home-box-assisted content delivery network 
for Internet video-on-demand services,” in Proc. IEEE ISCC, 2012, pp. 
544–550. 

[16] H. J. Kang et al., “Mobile caching policies for device-to-device (D2D) 
content delivery networking,” in  INFOCOM WKSHPS, 2014, pp. 299 - 
304. 

[17] M. Ji, G. Caire, and A. F. Molisch, “Wireless Device-to-Device Caching 
Networks: Basic Principles and System Performance,” Submitted to 
Networking and Internet Architecture, arXiv preprint 
arXiv:1305.5216v2, 2014. 

[18] M. Ji, G. Caire, and A. F. Molisch, “Fundamental Limits of Caching in 
Wireless D2D Networks,” Submitted to IEEE Transactions on Infor-
mation Theory, arXiv preprint arXiv:1405.5336v1, 2014. 

[19] Y. Zhang, L. Song, W. Saad, Z. Dawy, and Z. Han, "Contract-Based In-
centive Mechanisms for Device-to-Device Communications in Cellular 
Networks," IEEE Journal on Selected Areas in Communications, pp. 1-
12, 2015. 

[20] L. Gao, J. Huang, Y. Chen, and B. Shou, “Contract-based cooperative 
spectrum sharing,” IEEE Transactions on Mobile Computing, vol. 13, 
no. 1, pp. 174–187, 2014. 

[21] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J. 
Walrand, “Motivating smartphone collaboration in data acquisition and 
distributed computing,” IEEE Transactions on Mobile Computing, vol. 
13, no. 10, pp. 2320–2333, 2014. 

[22] B. Zeigler, H. Praehofer, and T. Kim, Theory of modeling and simula-
tion. San Diego: Academic Press, 2000. 

[23] G. Wainer, Discrete-event modeling and simulation: a practitioner's ap-
proach. Boca Raton: CRC/Taylor & Francis Group, 2009. 

[24] 3rd Generation Partnership Project, “Technical Report 36.942, V12.0.0,” 
2014. 

[25] A. Al-Hourani, S. Chandrasekharan, and S. Kandeepan, “Path loss study 
for millimeter wave device-to-device communications in urban envi-
ronment,” in  Proc. ICC, 2014, pp. 102-107.  

[26] M. Cha et al., “I tube, you tube, everybody tubes: analyzing the world’s 
largest user generated content video system”. in Proc. ACM SIGCOMM 
conference on Internet measurement, 2007, pp. 1–14. 

[27] S. Ahsan et al., Characterizing Internet Video for Large-scale Active 
Measurements, Submitted to the Networking and Internet Architecture, 
arXiv preprint arXiv:1408.5777v1, 2014. 



APPENDIX: FUNCTIONALITY OF THE BS AND UE CONTROLLERS 

Note: This appendix can be deleted from the final version of 

the paper to comply with the paper size limitations. The pur-

pose of this appendix is to provide further details on the im-

plementation of the BS and UE Controllers to the reviewers.   

A. BS Functionality 
The BS manages all the data transmission in the cell, the 

sessions with all the UEs, and allocates the radio frequency re-
sources to the UEs. Messages sent to the BS from UEs are 
buffered in the BS queue. Every Transmit Time Interval (TTI) 
which is 1 ms, the BS will check its queue for messages from 
UEs. The BS will process received messages and update the 
state of the corresponding download session. For instance, if 
the received message is a new download request, the BS will 
create a new Session object to that node. If it is a BitField 
message, the BS will delete the corresponding session, as the 
file transfer is complete. If the received message is 
SM_Finished message, the BS will update the statistics of that 
session (number of transmitted pieces, transmitted bits, etc.) 

At the beginning of the simulation, the BS controller is at 
the Initial state. Then it goes to the “Check Queue” state, dur-
ing which, the BS sends requests to the queue asking if there 
are any messages from UEs. The queue will send the next 
message in line. When BS receives a message, it goes to “Re-
ceive message” state. During this state, the BS processes the 
message and then sends another request to the Queue. When 
no more messages are available, the queue sends EMP-
TY_QUEUE message to the BS controller. When the BS con-
troller receives EMPTY_QUEUE message, it will go to the 
“Schedule” State. 

Scheduling is the most complex functionality of the BS 
model. During this state, the BS will go through the list of ses-
sions. Depending on the state of the session, the BS will take 
action, 

• If the session is new, the BS will prepare the MetaInfo 
and Handshake message. 

• If the BS is awaiting a message from the corresponding 
UE, the BS will skip to the next session. 

• If a piece message should be transmitted for that ses-
sion, the BS will prepare an Assistance Request mes-
sage if the piece is cached in the cluster, or prepare a 
Piece message if the piece is not cached in the cluster.  

• If the session has a message to transmit (Handshake 
message, Done message, Assistance Request, or a 
Piece message) the BS will call the message schedule 
function to allocate cellular RBs enough to transmit the 
whole message. If there are not enough RBs to transmit 
this message, the BS will allocate the remaining RBs in 
the next TTI. 

When the message scheduling function is called, it will 
calculate the needed RBs to transmit this message. The func-
tion then allocates RBs from this TTI to transmit the current 
message. If RBs in this RB are not enough, the model will al-
locate all the available RBs to this session (the needed RBs to 
transmit this message will be assigned from the next TTI), and 
go to the Send state, to send messages that are already sched-
uled for this TTI. A message is only sent when enough RBs 
are allocated. In the case in which the number of remaining 
RBs is greater than the number of needed RBs, the model will 

update the number of remaining RBs in this TTI, update its 
statistics, and push the current message to the list of messages 
that will be sent during the next Send state, and then go to the 
next session.  

After allocating all the RBs in TTI or scheduling all the 
messages that should be transmitted, the model will go to the 
Send state. At this stage, the model will go through the mes-
sages in the “Messages to send” list, and send them. The BS 
will send the messages that are scheduled to be sent in the first 
TTI slot, and then send the remaining messages. 

The BS also divides the D2D channel into subchannels. 
Every time the BS sends an Assistance Request message to a 
SM, it will assign a subchannel to this SM to use it to send the 
piece. When the BS receives SM_Finished message, it will get 
the subchannel back, and can use it with another assistance re-
quest. 

B. UE Functionality 
Each UE starts at the Idle state as shown in Fig. 8. Each 

time the UE at the Idle state, it will generate a request with a 
probability of 0.5 in 5 seconds, or wait and try again after 5 
seconds. After generating a request, a UE will wait for a 
Handshake message. After receiving the Handshake message, 
the UE will set the parameters for this session (file size, num-
ber of pieces, piece size, etc.). The UE will then wait for piec-
es of the file. After receiving all the pieces, and a Done mes-
sage, the UE will send a Bitfield message. When the file 
download is complete, the UE goes back to Idle state, and tries 
to generate another download request as described above. 

When a UE receives a Piece message while it is in Await 
Piece state, it updates the statistics for this session, and goes 
back to Await Piece state. If the UE is an SM and the Save bit 
in the Piece message is set, the UE will save the Piece mes-
sage. The Save bit is always set for Piece messages in STSM 
case (As described in section 3).  

 

Fig. 8. UE Controller's state diagram. 

When an SM UE is in the Await Piece state, and it receives 
an Assistance Request message, it will go to Send Piece state 
where it sends a Piece message to the requesting UE. Then it 
could go to back to Await Piece state, or could go to Send 
SM_Finished message to acknowledge the transmission of 
Piece(s), before going back to Await Piece state. 



 
 


